Injectable gel could spell relief for arthritis sufferers

Friday, April 15, 2011

Researchers at Brigham and Women’s Hospital (BWH) report an injectable gel that could spell the future for treating rheumatoid arthritis or its cousin osteoarthritis, diseases characterised by often debilitating pain in the joints. Among its advantages, the gel could allow the targeted release of medicine at an affected joint, and could dispense that medicine on demand in response to enzymes associated with arthritic flare-ups.

Researchers at Brigham and Women's Hospital (BWH) have developed a potentially new way to treat arthritis. Here, two of the researchers stand next to a graphic describing their approach. From left to right are Dr Praveen Kumar Vemula of BWH and Dr Jeffrey Karp, co-director of Centre for Regenerative Therapeutics at BWH. Photo by Donna Coveney

“We think that this platform could be useful for multiple medical applications including the localised treatment of cancer, ocular disease, and cardiovascular disease,” says Dr Jeffrey Karp, leader of the research and co-director of Centre for Regenerative Therapeutics at BWH.

Arthritis is a good example of a disease that attacks specific parts of the body. Conventional treatments for it, however, largely involve drugs taken orally. Not only do these take a while (often weeks) to exert their effects, they can have additional side effects. That is because the drug is dispersed throughout the body, not just at the affected joint. Further, high concentrations of the drug are necessary to deliver enough to the affected joint, which runs the risk of toxicity.

“There are many instances where we would like to deliver drugs to a specific location, but it’s very challenging to do so without encountering major barriers,” says Dr Jeffrey Karp, who also holds appointments through Harvard Medical School (HMS), Harvard Stem Cell Institute (HSCI), and Harvard-MIT Division of Health Sciences and Technology (HST).

For example, you could inject a drug into the target area, but it won’t last long–only minutes to hours–because it is removed by the body’s highly efficient lymphatic system. What about implantable drug-delivery devices? Most of these are composed of stiff materials that in a dynamic environment like a joint can rub and cause inflammation on their own. Further, most of these devices release medicine continuously–even when it’s not needed. Arthritis, for example, occurs in cycles characterized by flare-ups then remission.

“The Holy Grail of drug delivery is an autonomous system that [meters] the amount of drug released in response to a biological stimulus, ensuring that the drug is released only when needed at a therapeutically relevant concentration,” Dr Jeffrey Karp and colleagues write in Journal of Biomedical Materials Research (JBMR).

Researchers from Brigham and Women’s Hospital have developed a potentially new way to treat arthritis. Here their new gel (red, with yellow rectangles representing encapsulated medicine) is injected into an arthritic joint. There enzymes (black image) associated with arthritis break down the biodegradable gel, releasing the medicine. Courtesy: Dr Praveen Vemula, Karp lab, BWH

The researchers tackled the problem by first determining the key criteria for a successful locally administered arthritis treatment. In addition to having the ability to release drug on demand, for example, the delivery vehicle should be injectable through a small needle and allow high concentrations of the drug. The team ultimately determined that an injectable gel seemed most promising.

Next step: what would the gel be made of? To cut the time involved in bringing a new technology to market, the team focused only on materials already designated by US Food and Drug Administration as being generally recognised as safe (GRAS) for use in humans.

Ultimately, the researchers discovered a GRAS material that could be coaxed into self-assembling into a drug-containing gel. “The beauty of self-assembly is that whatever exists in solution during the assembly process–in this case, a drug–becomes entrapped,” says Dr Praveen Kumar Vemula, first author of the paper, who holds an appointment with BWH, HMS, HSCI and HST.

The researchers further expected that the same material would disassemble, releasing its drug payload, when exposed to the enzymes present during inflammations like those associated with arthritis.

A series of experiments confirmed this. For example, the team created a gel containing a dye as a stand-in for a drug, then exposed it to enzymes associated with arthritis. The drug was released. Further, the addition of agents that inhibited the enzymes stopped the release, indicating that the gel “can release encapsulated agents in an on-demand manner,” the researchers write. Although the team has yet to test this in humans, they did find that dye was also released in response to synovial fluid taken from arthritic human joints.

Among other promising results, the researchers found that gel injected into the healthy joints of mice remained stable for at least two months. Further, the gel withstood wear and tear representative of conditions in a moving joint.

Additional tests in mice are underway. The technique has yet to be demonstrated in humans, but the researchers write that it “should have broad implications for the localised treatment of many…diseases” caused by the enzymatic destruction of tissues.

Categories: Orthopaedics, RESEARCH

Tags: , , , , , , , , ,

  More from Orthopaedics

Why some dental implants work and others don’t


New technology switches on cell’s bone repairing ability


Doctors coin new terminology to describe a case of severe kyphosis with abdominal compression


Antibiotics after knee and hip surgery: Are they effective?


Number of people at high risk of fracture set to double by 2040


Study finds some physicians using unnecessary, potentially harmful imaging for acute lower back pain

Comments »

No comments yet.

Name (required)
E-mail (required - never shown publicly)
URI
Your Comment (smaller size | larger size)
You may use <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong> in your comment.